Condensed Matter Experiment & Computation

@ Yale AP
“Quantum” materials engineering
Condensed Matter Experiment & Computation at Yale AP&P

- **Understand** the microscopic mechanisms behind material properties
- **Predict** material properties with advanced theory tools
- **Control** and **create** material properties with experimental methods

- Why is Tc so high?
- Can $F = e^2 / r^2$ be twisted?
- Harnessing the power of nano-magnetism
- Making wafer-scale 2D quantum materials
- How to best functionalize surfaces and interfaces
- Designing next gen energy materials
Quantum Materials

- Understand the microscopic mechanisms behind material properties
- Predict material properties with advanced theory tools
- Control and create material properties with experimental methods

We do theory with...

- First principles calculation for electronic structure prediction
- Machine learning for quantum mechanics
- Supercomputing facilities for high performance computing

We do experiment with...

- Molecular beam epitaxy
- Bulk single crystal synthesis
- Nano-fabrication
- Scanning tunneling spectroscopy
- Photoemission spectroscopy
- Synchrotron X-ray scattering
- Magnetic imaging and low-T transport
- Scanning nearfield optical microscopy...
EVERY experimentalist here has a strong tie to the national labs

Close collaborations with other departments in SEAS and FAS
 ○ Chemical Engineering, MEMS, Physics, Chemistry...
Novel complex oxide interfaces:
- water splitting
- artificial neurons
- spintronics & ferroelectrics

Atomically resolved electronic states:
- topological state of matter
- nematicity and superconductivity
- vortex and density waves

Momentum resolved electronic states:
- high-Tc superconductivity
- magnetic metals and vdW materials
- correlated electronic systems

Electronic structure w/ first principles:
- solid-gas/solid-solid interfaces
- electron correlation in oxides
- 2D material and nanostructure

Electronic property w/ numerical methods:
- materials for energy applications
- machine learning in materials physics
- exotic magnetism

Magnetic nanostructures:
- topological designer magnets
- artificial spin ice
- low temperature transport properties

MBE, RIXS, XRD, transport…

STS, SNOM, RIXS, ARPES…

DFT, Green’s function, slave boson…

DFT, MD, Monte Carlo, Machine learning…

nano-lithography, SEM, MFM, PEEM…