Condensed Matter Experiment & Computation

@ Yale AP&P

4 August 1972, Volume 177, Number 4047

SCIENCE

Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

Many-body Physics

aka Approximate-Wisely Physics

The elementary entities of science X obey the laws of science Y.

X Y solid state or elementary particle many-body physics physics chemistry many-body physics molecular biology chemistry molecular biology cell biology psychology physiology social sciences psychology

But this hierarchy does not imply that science X is "just applied Y." At each stage entirely new laws, concepts, and generalizations are necessary, requiring inspiration and creativity to just as great a degree as in the previous one.

"Quantum" materials engineering

13 SEXTILLION &
COUNTING: THE LONG
& WINDING ROAD TO
THE MOST
FREQUENTLY
MANUFACTURED
HUMAN ARTIFACT IN
HISTORY

By <u>David Laws</u> | April 02, 2018

$$i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \mathcal{H}|\Psi\rangle$$
where
$$\mathcal{H} = -\sum_{j}^{N_e} \frac{\hbar^2}{2m} \nabla_j^2 - \sum_{\alpha}^{N_i} \frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha}^2$$

$$-\sum_{j}^{N_e} \sum_{\alpha}^{N_i} \frac{Z_{\alpha} e^2}{|\vec{r}_j - \vec{R}_{\alpha}|} + \sum_{j \ll k}^{N_e} \frac{e^2}{|\vec{r}_j - \vec{r}_k|} + \sum_{\alpha \ll \beta}^{N_j} \frac{Z_{\alpha} Z_{\beta} e^2}{|\vec{R}_{\alpha} - \vec{r}_{\beta}|}.$$

Hydrogen atom □ Hydrogen molecule □ 3-body problem □ GG

Quantum Materials

- **EVERY** experimentalist here has a strong tie to the national labs
- Close collaborations with other departments in SEAS and FAS
 - Chemical Engineering, MEMS, Physics, Chemistry, Energy Science Institute...
 - Fengnian Xia, Peijun Guo, Diana Qiu, Mengxia Liu

Ahn

Novel complex oxide interfaces:

- water splitting
- artificial neurons
- spintronics & ferroelectrics

MBE, RIXS, XRD, transport...

Ismail-Beigi

He

Momentum resolved electronic states:

- high-Tc superconductivity
- magnetic metals and vdW materials
- correlated electronic systems

ARPES, IXS, INS, growth...

Ozolins

Electronic structure w/ first principles:

- solid-gas/solid-solid interfaces
- electron correlation in oxides
- 2D material and nanostructure

DFT, Green's function, slave boson...

Electronic property w/ numerical methods:

- materials for energy applications
- machine learning in materials physics
- exotic magnetism

DFT, MD, Monte Carlo, Machine learning...

da Silva Neto

Atomically resolved electronic states:

- topological state of matter
- nematicity and superconductivity
- vortex and density waves

STS, SNOM, RIXS, ARPES...

Vidvuds Ozolins

Theory of electronic structure & energy materials

Theory of real electronic materials

Applications in energy storage, generation and conversion

- Transport of heat and electrical current Thermoelectric effect
- Exotic magnetism spin liquids

Machine learning for quantum mechanics:

- Solving the Schrödinger equation
- Localized basis for electron correlation
 - Wannier functions
- Deep Boltzmann machines and Convolutional Neural Nets for Quantum Monte Carlo

Sohrab Ismail-Beigi

Electronic structure & materials theory from first principles

Interfaces between two materials: How is the interfacial region different from either side? What do electrons do in such an asymmetric environment?

Nanoscale/low-dimensional materials

- 2D materials: synthesis, bonding, electronic & optical response, topology
- Ferroelctric surface chemistry

Electron correlation especially in transition metal oxides

(many-body Green functions; slave bosons)

Ahn Research Group

- Synthesis using molecular beam epitaxy.
- Characterization using synchrotron x-rays.

- Picoscale Engineering
- To invent new materials
- Apply to:

Ahn

Neuromorphic computing

Tool development for Solid State Quantum Simulation

2D Magnetism

Metal to insulator transitions

Superconductivity

da Silva Neto Lab Department of Physics

Investigating Novel Quantum States of Matter

Department of Physics Energy Sciences Institute

Quantum Materials

- <u>Understand</u> the microscopic mechanisms behind material properties
- <u>Predict</u> material properties with advanced theory tools
- <u>Control</u> and <u>create</u> material properties with experimental methods

We do theory with...

- First principles calculation for electronic structure prediction
- Machine learning for quantum mechanics
- Supercomputing facilities for high performance computing

We do experiment with ...

- Molecular beam epitaxy
- Bulk single crystal synthesis
- Nano-fabrication
- Scanning tunneling spectroscopy
- Photoemission spectroscopy
- Synchrotron X-ray scattering
- Magnetic imaging and low-T transport
- Scanning nearfield optical microscopy ...