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A new order parameter with a novel broken symmetry is proposed for the fractional quantum Hall
effect, with the Laughlin state as the mean-field ground state. The classical Ginzburg-Landau theory of GTCSOI’Y MOORE
Girvin is derived microscopically from this starting point and exhibits all the phenomenology of the frac-
tional quantum Hall effect. Department of Physics, Yale University, New Haven, CT 06511, USA
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Appiications of conformal field theory to the theory of fractional quantum Hall systems are

Patrick A. Lee discussed. In particular, Laughlin’s wave function and its cousins are interpreted as conformal
Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 blocks in certain rational conformal field theories. Using this point of view a hamiltonian is
. constructed for electrons for which the ground state is known exactly and whose quasihole
Nicholas Read excitations have nonabelian statistics; we term these objects “nonabelions”. It is argued that

Departments of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520 - . . ’ Sl
(Received 17 June 1992; revised manuscript received 22 October 1992) universality classes of fractional quantum Hall systems can be characterized by the quantum
numbers and statistics of their excitations. The relation between the order parameter in the
fractional quantum Hall effect and the chiral algebra in rational conformal field theory is

stressed, and new order parameters for several states are given.

A two-dimensional electron system in an external magnetic field, with Landau-level filling factor
v= %, can be transformed to a mathematically equivalent system of fermions interacting with a Chern-
Simons gauge field such that the average effective magnetic field acting on the fermions is zero. If one ig-
nores fluctuations in the gauge field, this implies that for a system with no impurity scattering, there
should be a well-defined Fermi surface for the fermions. When gauge fluctuations are taken into account,
we find that there can be infrared divergent corrections to the quasiparticle propagator, which we inter-
pret as a divergence in the effective mass m ™, whose form depends on the nature of the assumed

electron-electron interaction v(r). For long-range interactions that fall off slower than 1/r at large sepa- PHYSICAL REVIEW B VOLUME 59, NUMBER 12 15 MARCH 1999-1
ration », we find no infrared divergences; for short-range repulsive interactions, we find power-law diver-
gences; while for Coulomb interactions, we find logarithmic corrections to m *. Nevertheless, we argue Beyond paired quantum Hall states: Parafermions and incompressible states

that many features of the Fermi surface are likely to exist in all these cases. In the presence of a weak
impurity-scattering potential, we predict a finite resistivity p,, at low temperatures, whose value we can
estimate. We compute an anomaly in surface acoustic wave propagation that agrees qualitatively with
recent experiments. We also make predictions for the size of the energy gap in the fractional quantized
Hall state at v=p /(2p + 1), where p is an integer. Finally, we discuss the implications of our picture for
the electronic specific heat and various other physical properties at v= 3, we discuss the generalization

in the first excited Landau level
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to other filling fractions with even denominators, and we discuss the overall phase diagram that results
from combining our picture with previous theories that apply to the regime where impurity scattering is
dominant.
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The Pfaffian quantum Hall states, which can be viewed as involving pairing either of spin-polarized elec-
trons or of composite fermions, are generalized by finding the exact ground states of certain Hamiltonians with
k+ 1-body interactions, for all integers k=1. The remarkably simple wave functions of these states involve
clusters of k particles, and are related to correlators of parafermion currents in two-dimensional conformal field
theory. The k=2 case is the Pfaffian. For k=2, the quasiparticle excitations of these systems are expected to
possess non-Abelian statistics, like those of the Pfaffian. For k=3, these ground states have large overlaps with
the ground states of the (two-body) Coulomb-interaction Hamiltonian for electrons in the first excited Landau
level at total filling factors v=2+3/52+2/5. [S0163-1829(99)06911-8]



Motivation

Dualities in CM and QFT

Particle-Vortex duality and its applications to the Fractional
Quantum Hall Effect

Conjectured dualities, bosonization and fermionization
Loop models: flux attachment, duality and periodicity
Periodicity vs Fractional Spin

Implications for Fractional Quantum Hall fluids



Dualities

EM duality: E < B, electric charges & magnetic monopoles=Dirac

quantization

2D Ising Model: Kramers-Wannier duality, high T < low T, order < disorder
Duality of the 3D 72 gauge theory < 3D Ising model, order < confinement
Particle-Vortex duality: electric charge < vortex (magnetic charge)
Mappings between phases of matter, most often between different theories

Conjectured web of dualities between CFTs in 2+1 dimensions



Fractional Quantum Hall Effect

Flux attachment for statistical transmutation

Landau-Ginzburg theory (Read; Zhang, Hansson and Kivelson: Non-Relativistic abelian-
Higgs model with a Chern-Simons term: Electrons are “composite” bosons coupled to m
fluxes

Fermionic flux attachment (Jain, Lopez and Fradkin, Halperin, Lee and Read)
FQH plateau: composite bosons condense; the excitations are anyonic vortices
FQH insulator: bosons are uncondensed and the gapped excitations are fermions

Universal phase diagram for the FQH states based on particle-vortex duality (Kivelson,
Lee and Zhang) with “super-universal” transitions (superconductor-insulator transition)

Apparent self-duality at the plateau transitions (I <= V) (Shimshoni, Sondhi and Shahar)



Bosonic Particle-Vortex Duality

* Particle-vortex duality of 3D XY model (Peskin, Stone, Halperin-Dasgupta)

e U(1) broken symmetry phase (m2 < 0); excitations: closed quantized vortex
lines with long range interactions

* U(1) unbroken symmetry phase (m2 > 0); excitations: massive charged
bosons, closed worldlines with short-range repulsive interactions

e Duality: particles < vortices, high T < low T, strong coupling & weak coupling

e The 3D XY model as a loop model: lattice partition function sums over
configurations of closed loops with short-range repulsive interactions

* Phase diagram for FQH fluids (Kivelson, Lee and Zhang) and plateau transitions

* 2+1-dimensional boson-boson complex scalar field theory mapping

1
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Web of Dualities

Recently conjectured dualities between fixed points (relativistic CFTs)
Fermionic particle-vortex duality (“QED3”) (Son, Metlitski-Vishwanath):

i ID (AN — S%AdA s ixI(a)x — %adA _ 8—7TAdA

maps Time reversal to Charge conjugation (PH); B «—u

Bosonization duality (Seiberg, Senthil, Wang and Witten):

i ID(A) — S%AdA s |D(a)o|? — |8|* + —ada + QiadA



Our Strategy

Goldman and EF, Phys. Rev. B 97, 195112 (2018); ibid. 98, 165137 (2018)

e “Derive” this web of dualities using quantum loop models near
criticality, but still in the gapped phases.

e These models are related to modular invariant models
originally introduced by Kivelson and myself

* Modular invariance cannot be kept close to the CFT.

* “Fractional spin” breaks modular invariance, and gives rise to
Dirac fermions, leading to loop model based “proofs” of the
CFT duality web.



Quantum Loop Models and Duality
(EF and Kivelson 1996)

* Non-intersecting linked loops [J,] in 3D Euclidean space-time (with no spin) with
exact particle-hole symmetry

e flux attachment with fractional statistics 8, long ranged interactions with
coupling g, and short-range repulsion (to avoid crossings)

 The imaginary part of the action is given in terms of the loops linking number
209,00 = D 8(AuJ")e 5]

Ju(y)

T,y x,Y \
_ / linking number =6®[J]

PuPv
Guv(p) = (5uv — ;—2> , Kuu(p) = ZGLW)\ p2

Field theory picture: 2+1 D complex scalar field coupled to 3+1 D Maxwell field with a 8 term
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Self-Duality and Modular Invariance

9 2
Modular parameter: r=2 45

T 27

The partition functions of loop models regularized without self-linking
(fractional spin) have the symmetries

S: duality: Z[t]=Z[-1/1], and T": Periodicity: Z[t]=Z[T+1]

S and T generate the modular group PSL(2,Z)

The partition function is self dual at the fixed points of the modular group
Two types of PSL(2,7) fixed points: “bosonic” and “fermionic”

FK showed that the finite modular fixed points are quantum critical points with
Oxx 0 and Oxy = 0

The predicted conductivities are different in the FK loop models and the
relativistic web of dualities
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The Role of Fractional Spin

e The linking number of two separate loops [y and Lo is

®[J = {1 + 5] = 2 x (Linking number of ¢ with ¢5) + W [l1] + W [¥5)]

A~ 7

“Writhe.” Associated with self linking. Not
necessarily a topological invariant.

e Witten: point-split the loops into ribbons so that the writhe is a frame-
dependent topological invariant W] = SL[l] = integer. Only consistent
deep in the topological phase, not as the critical point is approached.

e Polyakov: no-point splitting and Wl] = SL[!] - T[l] (writhe = self-linking -

twist)
/ ds/ due - 0,e X 0 e
27T

T1l] is a Berry phase (fractional spin) and e is the tangent vector to the
loop. The twist T[[] is not quantized and depends on the metric.
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Fractional Spin:
Periodicity Lost, 3D Bosonization Regained

e T[l] is not quantized. Means Duality S remains a symmetry, but periodicity T
IS lost

e Polyakov: fractional spin leads to the (IR) duality between a complex
massive scalar with CS at k = 1 and a massive Dirac spinor (with a parity

anomaly)

e Loop model representation

Ltermion = det[z’@ — M| = /DJ 5(@MJM) o~ |m|L[J]—isign(M)m®[J]

L[J]: length of loop, @[J]: linking number (including the spin factor)

For general statistical angle 6 we have the loop model
7 — /DJ 5(8MJ’M) €—|m\L[J]—|—7j9<I>[J]
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Fractional Spin:
Periodicity Lost, 3D Bosonization Regained

e (Can we use this to “derive” the web of dualities? Yes!

* First step: We introduce background fields to the boson side of Polyakov’s
duality in the unbroken phase

Lp = |Dla]¢|* — m3l¢]* — |¢|* + =ada + 5=adA

Exact rewriting as loop model coupled to gauge fields

Z[A] = / DJDa §(9,J*) e~ ML+ Ta.A

1 1
_ 3 _ i _
S|J,a, A] = /d T [J(a A) + 47Tada, 47TAdA+...]

Integrating-out a results in a term involving the linking number and the spin factor

1
— ®[J] + / d>x [JA — —AdA]
4
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Lr = BED[A] — M) — SLAdA with M<0
7T

Loop model representation

Ztermion|A; M < 0] e tCS[A]/2 /’DJ (0, J") o~ IMIL[J]+iStermion[J,A; M <0] ,—i CS[A]/2

1
Sfermion[J, A,M < O] — /dBZIZ' (JA— 8-AdA> —W(I)[J]
T

The bosonization identity in the phase with broken time reversal, M>0, is
obtained by a particle vortex duality in the bosonic theory
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Loop Models: Tools for Deriving Dualities

. Start with a proposed duality and write down boson loop models for each
theory using Polyakov’s duality.

. Use path integral manipulations to equate the two loop model partition
functions.

. Match both sides of the critical point using bosonic particle-vortex duality.
Relates superfluid of particles to insulator of vortices.

. The dualities are IR identities

. In the bosonic theories the short-distance repulsion between loops become
the ¢4 coupling, which in the massless limit flow in the IR into the WF fixed
point
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Example: Fermion particle-vortex duality

Use loop models to derive the duality between free Dirac fermion and QED3 with
(quantized) Chern-Simons terms

(WID[A]V — = AdA — i Plaly + g-ada — 5=adb + £-bdb — 5=bd A
‘ MO, M <0 *—M’W, M'" >0

1 2 1
3 L _ 3 pmo_ _
/d x J,AY 4 7] —a——————— —mD[J] + /d z [Jua 5—adb+ ——bdb — _—bdA
Integrate out a, b

Zr|A; M < 0] = Zqep, |A; M' > 0], Zp[A; M > 0] = Zqgep, |A; M’ < 0]

e (Case for opposite mass signs (QH phase) follows from the same logic

e Current mapping also natural upon integrating out b:

1

NPT ym e,wn0’a”  (derived earlier by EF and F. Schaposnik, 1994)
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Compressible “FQH” states and Duality

The Jain sequences of FQH states v(p, n)=p/(2np+1) converge to v=1/(2n) where
the FQH gap vanishes — Halperin, Lee, Read theory of a composite Fermi liquid

This theory had great successes. It also has problems: in the simplest case,
n=1, v— 1/2 and PH symmetry is expected (for large B).

HLR is not compatible with PH (DH Lee)

The “Fermi liquid” is a “Non-Fermi liquid”

Son proposed a relativistic version of HLR which satisfies PH
At finite u (Fermi surfacel) this is still a “non-Fermi liquid”

What about the v=1/2n compressible states where PH should not hold?
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1/2n Compressible States

Compressible states with v=1/2n are
predicted by the Jain sequences

They are seen in experiment

PH does not hold for general n

Reflection symmetry of the |-V curves
at plateau transitions

Interpreted as evidence of particle-
vortex duality (Shahar, Shimshoni,
Sondhi)

For v=1/2 PH symmetry relates pxx to
oxx and ve—1-v
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Symmetries at 1/2n Compressible States

The same reflection symmetry is seen at v=1/4,

locus of v=1/3 — 0 transition (where v+ 1-v), with
Pxy=-3€2/h

This is not PH symmetry!

For v=1/2n the symmetry is between the Jain
states at v=p/(2np+1) and v’=(1+1)/(2n(1+p)-1),
both converging to 1/2n

For reflection symmetry to hold the HLR
composite fermions must have oxy=-€2/2h

Flux attachment breaks PH and reflection explicitly

Same problems in Son’s theory which needs to be
modified to treat v and v’ equitably
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[Shahar et al., Science (1996)].




Reflection symmetry at v=1/2n

£1/2n — ’Mﬁwalp — L (% — L) ada L1 adA L1 AdA

47 27 2n 2n 4

A s the external gauge field of strength B, and a is the Chern-Simons
field (flux attachment)

5L,
lectron filing: ¥ = F(—577) = 5 (1 + be )




Reflection symmetry and boson self-duality
1 1
4dm 2n — 1

2n — 1 1
hdh + —hdA
A7t * 27T

L1/2m < |Dg—ad|”> — |¢]* A gdg

— |Dpel® = |o|*

First line: fermion-boson duality

Second line: boson-vortex duality

relates vy to - 1/v,

v=1/2n & vy = - v,=1

Reflection related filling fractions vy (v) = - vy(V)
Reflection symmetry is boson-vortex exchange

Reflection symmetry at v=1/2n < boson self-duality!
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Conclusions

Loop models offer a bridge to the “derivation” of the web of dualities for
relativistic theories

The loop models are always interacting and scalar fields are never free
Fractional spin plays a key role

It is always possible to find a dual theory

Periodicity of flux attachment, and SL(2,7), is not a symmetry for
relativistic theories

New insights from duality (and self-duality) on the v=1/2n states of the
FQH fluids
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